United States Patent

US009454361B2

(12) (10) Patent No.: US 9,454,361 B2
Karadakal 45) Date of Patent: Sep. 27,2016
(54) SYSTEM AND METHOD OF MERGING OF 2004%,0315197,2;; izl * égg(l)i glemfg et aLal ~~~~~~~~~~~~~~~~ 717/120
avender et al.
OBJECTS FROM DIFFERENT REPLICAS 2006/0101443 ALl™* 52006 Nasrcccceeveevnennee 717/163
(75) Inventor: Basavaraj V. Karadakal, Santa Clara, OTHER PUBLICATIONS
CA (US) o . .
Larry Allen et al., ClearCase MultiSite: Supporting Geographi-
. . . . cally-Distributed Software Development, Software Configuration
(73) Assignee: Avaya Inc., Basking Ridge, NJ (US) Management, 194 (1995).%
. “Rational ClearCase Commands Reference,” http://www.ipnom.
(*) Notice: SUbJeCt. to any dlSCIalmer{ the term of this com/ClearCase-Commands/mkelem html, May 14, 2009, 9 pages.
patent is extended or adjusted under 35 CM-Logic Ltd., CM-Logic announcement, http://www.cm-logic.
U.S.C. 154(b) by 2081 days. com/news/cm-logic-announces-cm-inpractice-4.0-for-ibm-
clearcase . . ., May 14, 2009, 2 pages.
(21) Appl. No.: 12/503,562 . .
* cited by examiner
(22) Filed: Jul. 15, 2009 Primary Examiner — Henry Tsai
(65) Prior Publication Data Assistant Examiner — Juanito Borromeo
US 2011/0016450 Al Jan. 20, 2011 (57) ABSTRACT
(51) Tnt. Cl A first object, typically a software source code object, is
G0;$F 5')/44 (2006.01) checked-in at a first replica of a base object. The replica
) US. Cl ’ typically comprises a plurality of objects (e.g., a source code
(2) CPC : GOGF 8/71 (2013.01 base for a software project). The first object is a version of
A e g (D) a base object. The first object is then delivered to a second
(58) Field of Classification Search replica of the base object. If it is determined at the second
None L . replica that a trivial merge cannot be performed between the
See application file for complete search history. first object and the current base object, the current base
(56) References Cited object is delivered to the first replica. The first object is

U.S. PATENT DOCUMENTS

rebased with the current base object. The rebased first object
is sent to the second replica and a trivial merge is performed
between the rebased first object and the current base object.

-
c
=4
o
4
@]
z

6,615,223 Bl 9/2003 Shih et al.
7,603,393 BL1* 10/2009 Cote et al.ccoeveenenee 707/101 21 Claims, 3 Drawing Sheets
LOCATION B 110B
LOCATION C 110C (OBJECT LOGATION A 110A
| (OBJECT MERGER 112) IMANAGER 11 1B)I (OBJECT MANAGER 111A) |
202
| | | - |
[I I AL |
| | DELIVERY |
B
' ADDED o o) !
| I FuncTioN Lo |
| | | C |
| SEND || | I
| CURRENT] | | 201 |
| omeo |1 | /- 23 |
AT REBASE
: I o | A :
B
CURRENT BASE	DELIVERY
CURRENT BASE OBJECT AFTER 203	
OBJECT AFTER TRIVIAL MERGE 225 /‘	203
/20	TRIVIAL MERGE 212 f201 A A I N
[A] B[]	24 o Vi
> l	
ple B[] DELIVERY s [] I	
oRrIGINAL ¢ B	
BASE 213	
OBJECT TRIVIAL MERGE	

U.S. Patent Sep. 27, 2016 Sheet 1 of 3 US 9,454,361 B2

‘{/'100
110A

110B

111B
/,

OBJECT
MANAGER

OBJECT
MANAGER

113B

LOCATION A LOCATION B

NETWORK

110C

/r-112

OBJECT
MERGER

LOCATION C

FIGURE 1

US 9,454,361 B2

Sheet 2 of 3

Sep. 27, 2016

U.S. Patent

10L OL
m_m<mm_%A
£zz

Z 34NOI4
I I
| ¥ NOILONNS |
| OLOW |
I —
[| a
I |
B v AYIAMAA
I oz’ I a2
| | 193rgo
JONIN TVIANL
_ | JOYIN IVIAINL ~SZZ Seve
EEe] o _ _ TVNIDINO
Adanmaa | o]
[Js ~ | —» <« g [1=
[v ree _ _ [s B2 v CJv
b\ 2 ! | [v oz |2t 3ouan kL [oez -/
| _ mom\ G2z IOHAN IVIAIML 4314V 103rdo
_ _ Y314V 1D3r90 3Sva LNIHHNO
| Ay3aanza | 3Svd LNIHEND
_ zze | - e
_ /[Loarao
_ || 3sve
_ (IRECCRe
5 | _ an3s
ez
T NOILONNA
[O _
[18 —%a=nma |
[Jv _ _
| |
20z~ |

(VL1l 4I9OYNVYIN LO3rg0)
V0Ll V NOILYOO1

(ALLL HIDOYNYIN (ZLL ¥39¥3aW Lo3rg0)
123rgo0) 2011 2 NOILYDO1
€40L 1 9 NOILYDOT

U.S. Patent Sep. 27, 2016 Sheet 3 of 3 US 9,454,361 B2

300
f

CHECK-IN FIRST OBJECT
AT A FIRST REPLICA

302

DELIVER THE FIRST
OBJECT TO A SECOND

REPLICA

TRIVIAL

MERGE DETERMINE IF A TRIVIAL

MERGE CAN BE PERFORMED BETWEEN
THE FIRST OBJECT AND A CURRENT
BASE OBJECT

312 NON-TRIVIAL
/ MERGE /- 306
PERFORM THE TRIVIAL
MERGE DELIVER THE CURRENT
BASE OBJECT TO THE
¢ /. 314 FIRST REPLICA
DONE l r 308

REBASE THE FIRST
OBJECT WITH THE
CURRENT BASE OBJECT

l r 310

DELIVER THE REBASED
FIRST OBJECT TO THE
SECOND REPLICA

FIGURE 3

US 9,454,361 B2

1
SYSTEM AND METHOD OF MERGING OF
OBJECTS FROM DIFFERENT REPLICAS

TECHNICAL FIELD

The system and method relates to object management
systems and in particular to object management systems that
merge objects from different replicas.

BACKGROUND

There are a number of systems for managing objects such
as source code files. These systems allow a developer to
check-out a file(s) of a software base, make modifications to
the file(s), and then check the files back in to the software
base. The checked-in software must then be merged into the
software base and/or other branches of the software base.
The process of checking-in a file and merging the file is
relatively straightforward when all the development is
occurring at the same location and there are a limited
number of developers. Files can be checked-in and merged
at the same location using the same process.

However, current systems fall short when development on
a software base is accomplished by multiple developers at
multiple locations each of which has its own replica of the
base. A developer may have to check-in a file at one location
and then login remotely to a second location to complete the
merge process. Having to complete these steps separately
causes more complexity for cross-site software develop-
ment.

For example, the IBM® ClearCase® system requires that
a developer at a first location check-in a changed file at the
first location. After the file has synchronized to a second
replica, the developer must login at the second location and
then perform a merge of the file into the code base. The
developer is unable to perform these two steps at the same
location, thus causing the developer to have extra overhead
when checking-in and merging code in a multi-location
environment.

SUMMARY

The system and method are directed to solving these and
other problems and disadvantages of the prior art. A first
object, typically a software source code object, is checked-in
at a first replica of a base object. The replica typically
comprises a plurality of objects (e.g. a source code base for
a software project). The first object is a version of a base
object. The first object is then delivered to a second replica
of the base object, to be merged at the second replica. If it
is determined at the second replica that a trivial merge
cannot be performed between the first object and the current
base object, the current base object is synchronized back to
the first replica. The first object is rebased with the current
base object. The rebased first object is then delivered to the
second replica and a trivial merge is performed between the
rebased first object and the current base object.

DEFINITIONS

Below is a list of definitions used to clarify the terminol-
ogy used herein.

Base Object—A base object is an object from which
another object is created.

Trivial Merge—Merging two objects where one of the
two objects is the base object from which the other object

10

15

20

25

30

35

40

45

50

55

60

65

2

was originally generated. A trivial merge results in a new
version of base object which is identical to the other object.

Non-Trivial Merge—Merging two objects where both of
the two objects are derived from the same base object, but
are different than the base object. There are two kinds of
non-trivial merges: 1) Automatic, and 2) Complex. Auto-
matic is where the two merged objects are different, but the
changes to each object have occurred in different sections
(functions). Complex is where the two merged objects are
different and changes have been made to the same section
(functions) of both objects. Complex merges will typically
have to be reconciled by a developer.

Rebasing—Updating an object with the current base
version by merging the changes (either automatic or com-
plex) from the current base object into the object.

BRIEF DESCRIPTION OF THE DRAWINGS

These and other features and advantages of the system
and method will become more apparent from considering
the following description of an illustrative embodiment of
the system and method together with the drawings, in which:

FIG. 1 is a block diagram of a first illustrative system for
managing merges of objects from different replicas.

FIG. 2 is a block diagram indicating how objects are
merged from different replicas.

FIG. 3 is a flow diagram of a method for managing merges
of objects from different replicas.

DETAILED DESCRIPTION

FIG. 1 is a block diagram of a first illustrative system 100
for managing merges of objects from different replicas. The
first illustrative system 100 comprises locations 110A, 110B,
110C, and the network 120. The network 120 can be any
type of network such as the Internet, a Local Area Network
(LAN), a Wide Area Network (WAN), the Public Switched
Telephone Network (PSTN), a wireless network, a wired
network, and the like. Each location 110 comprises a replica
113—a copy—of an object. The replicas 113 are a distrib-
uted data-store for storing and synchronizing information
between locations 110 such as a database, a directory
service, and the like. A replica typically contains multiple
objects of an object (code) base. When objects (data) in a
replica 113 changes, the changes in that replica 113 are
synchronized (made) to the other replicas 113 using known
techniques.

Locations 110A and 110B each comprise an object man-
ager 111. The object manager 111 is any device/software
capable of managing objects. An object can be any type of
object such as a software object (e.g., a Java object, a C
object, a C++ object, a shell script, and the like), a binary
software object, an image object, a video object, a file object,
and the like. Location 110C is not shown with an object
manager 111, but can also contain an object manager 111.

Location 110C further comprises an object merger 112.
An object merger 112 is any device/software capable of
merging objects and/or facilitating the merging of objects.
The object merger 112 is shown only in location 110C, but
any locations 110A and 110B can also contain an object
merger 112.

FIG. 2 is a block diagram indicating how objects are
merged from different locations 110 based on the exemplary
block diagram of FIG. 1. FIG. 2 shows an example of a
software object (e.g. a Java source file) that is modified and
merged. An original base object 200 is stored in the replicas
113 (after synchronization). The original base object 200 has

US 9,454,361 B2

3

two functions (sections), A and B. A software developer at
location 110B requests to check-out a copy of the original
base object 200 to work on. The object manager 110B
checks-out 210 a copy of the original base object 200 to the
developer at location 110B to work on. A software developer
at location 110A also requests to check-out a copy of the
original base object 200. The object manager 110A checks-
out 211 a copy of the original base object 200 for the
developer at location 110A to work on. In the drawing it is
shown that the developer at location 110A and the developer
at location 110B are checking-out a copy of the original base
object 200 from replica 113C for ease of illustration. How-
ever, the developer at location 110A will check-out the copy
of the original base object 200 from replica 113A and the
developer at location 110B will check-out a copy of the
original base object 200 from replica 113B.

The developer at location 110B modifies function A
(identified as A'") of the checked-out version of the original
base object 200 to produce a first object 201 with the same
name. The developer at location 110B requests to check-in
the first object 201. The object manager checks-in the first
object into replica 113B. The first object 201 is delivered
(synchronized) 212 to replica 113C from replica 113B.
Synchronizing the replicas 113 can be accomplished in a
variety of ways, such as automatically upon requesting to
merge (deliver) the first object, based on a time interval, and
the like. A trivial merge 213 is performed by the object
merger 112 between the original base object 200 and the first
object 201 at replica 113C. A trivial merge 213 can be
performed because one of the objects being merged is the
original base object 200 and the first object 201 was gen-
erated from the original base object 200. The first object 201
now becomes the current base object in replica 113C and is
synchronized to replicas 113A and 113B (not shown).

The software developer at location 110A modifies the
original base object 200 by adding function C to generate a
second object 202 with the same name. The modification can
be a newer version of the base object 200, based on an older
version of the base object 200 (e.g. the developer cut and
pasted an older version of the base object into the file), a
copy of a deleted base object, and the like. The software
developer at location 110A requests to check-in the second
object 202. The object manager 111A checks-in the second
object 202 into replica 113A. Object manager 111 A delivers
220 the second object 202 to replica 113C (and replica 113B,
not shown) from replica 113A.

The object merger 112 determines if a trivial merge can be
performed between the first object 201 and the second object
202. In this example, a trivial merge cannot be performed.
This is because the current base object (first object) 201 has
been modified and is different than the original base object
200 that the second object 202 is generated from. The object
merger 112 can force immediate synchronization of the new
base object 201 to the location 110A, to enable the object
manager 111A at location 110A to rebase second object 202
with the new base object 201 at location 110A. Object
manager 111A rebases 223 the current base object 201 into
the second object 202 by merging the changes (A') in the
current base object 201 into second object 202 to produce a
third object 203 in replica 113 A. Rebasing the current base
object 201 can be done automatically (e.g., if the merge is a
non-trivial automatic merge), manually by the developer
reconciling the differences of a complex merge, based on
user-defined preferences, and the like. The object manager
111 A delivers (synchronizes) 224 the third object 203 to the
object merger 112 via replica 113C. Upon delivery 224, the
object merger 112 performs a trivial merge 225 of the third

10

15

20

25

30

35

40

45

50

55

60

65

4

object 203 with the current base object 201. The trivial
merge 225 can be performed because the current base object
201 has been rebased by object manager 111 A into the third
object 203, which is based on the current base object 201.
The trivial merge 225 causes the third object 203 to become
the current base object.

FIG. 3 is a flow diagram of a method for managing merges
of objects from different replicas. Illustratively, the object
manager 111 and the object merger 112 are stored-program-
controlled entities, such as a computer/processor, which
performs the method of FIG. 3 by executing a program
stored in a storage medium, such as a memory or disk.

The process begins when a first object is checked-in 300
at a first replica 113. The first object is a version of a base
object. The first object is delivered 302 to a second replica
113. The process determines 304 at the second replica if a
trivial merge can be performed between the first object and
the current base object. If the trivial merge in step 304 can
be performed, the process performs 312 the trivial merge
and is done 314.

Otherwise, if the trivial merge cannot be performed in
step 304 because the merge is a non-trivial merge (complex
or automatic), the current base object is delivered (synchro-
nized) 306 to the first replica. The first object is rebased 308
with the current base object. The rebased first object is
delivered 310 to the second replica. The process then
determines 304 if a trivial merge can be performed between
the rebased first object and the current base object. In this
example, the trivial merge in step 312 will be performed
because the first object has been rebased to the current base
object.

The previously described systems and methods can also
be used where there are multiple code branches. For
example, during a software development after a code version
is released (version 1.0), one code branch may be created to
only integrate bug fixes (version 1.01) while another branch
may be created to add feature enhancements (version 2.0).
Both versions 1.01 and 2.0 are created from the same code
base and there is one master replica of each code base that
is delivered to the other replicas 113. In the future, a file from
version 1.01 and version 2.0 may need to be merged to
integrate the bug fixes from version 1.01 into version 2.0.
This can be done using the same process that is described in
FIGS. 1-3. In order to merge the two files, a trivial merge
cannot be performed and the files will have to be rebased in
order to perform a trivial merge as described previously.

The phrases “at least one”, “one or more”, and “and/or”
are open-ended expressions that are both conjunctive and
disjunctive in operation. For example, each of the expres-
sions “at least one of A, B and C”, “at least one of A, B, or
C”, “one or more of A, B, and C”, “one or more of A, B, or
C” and “A, B, and/or C” means A alone, B alone, C alone,
A and B together, A and C together, B and C together, or A,
B and C together.

The terms “a” or “an” entity refer to one or more of that
entity. As such, the terms “a” (or “an”), “one or more” and
“at least one” can be used interchangeably herein. It is also
to be noted that the terms “comprising”, “including”, and
“having” can be used interchangeably.

Of course, various changes and modifications to the
illustrative embodiment described above will be apparent to
those skilled in the art. These changes and modifications can
be made without departing from the spirit and the scope of
the system and method and without diminishing its attendant
advantages. The above description and associated Figures
teach the best mode of the invention. The following claims
specify the scope of the invention. Note that some aspects of

US 9,454,361 B2

5

the best mode may not fall within the scope of the invention
as specified by the claims. Those skilled in the art will
appreciate that the features described above can be com-
bined in various ways to form multiple variations of the
invention. As a result, the invention is not limited to the
specific embodiments described above, but only by the
following claims and their equivalents.

What is claimed is:

1. A method for managing changes in objects at different
locations comprising:

a. checking-in a first object at a first replica of a base
object, wherein the first object is a version of the base
object;

b. delivering the first object to a second replica of the base
object;

c. determining at the second replica if a trivial merge can
be performed between the first object and a current said
base object;

d. in response to determining that the trivial merge cannot
be performed, delivering the current base object to the
first replica; and

e. rebasing the first object with the delivered current base
object.

2. The method of claim 1, further comprising the steps of
delivering the rebased first object to the second replica and
performing the trivial merge of the rebased first object and
the current base object to form a new said current base
object.

3. The method of claim 1, wherein the step of delivering
the first object to the second replica is accomplished auto-
matically upon requesting to merge the first object.

4. The method of claim 1, wherein the step of delivering
the first object to the second replica further comprises
synchronizing changes in the first replica to the second
replica.

5. The method of claim 1, wherein the first object is an
item selected from the group comprising: a newer version of
the base object and a copy of the base object.

6. The method of claim 1, wherein rebasing is accom-
plished based on a user defined preference and/or manually.

7. The method of claim 1, wherein the base object, the
current base object, and the first object all have a same name.

8. The method of claim 1, in response to determining that
the trivial merge can be performed, performing the trivial
merge of the first object and the current base object to form
a new said current base object.

9. The method of claim 1, wherein the first object is a Java
object, a C object, a C++ object, a binary software object, a
shell script object, an image object, a video object, a
directory object, and a file object.

10. The method of claim 1, wherein the first object is in
a first code branch and the current base object is in a second
code branch.

11. A system for managing changes in objects at different
locations comprising:

a. a object manager configured to check-in a first object at

a first replica of a base object, wherein the first object
is a version of the base object, deliver the first object to

10

15

20

25

30

35

40

45

50

55

6

a second replica of the base object, and rebase the first
object with a current said base object; and

b. an object merger configured to determine at the second
replica if a trivial merge can be performed between the
first object and the current base object, and responsive
to determining that the trivial merge cannot be per-
formed, deliver the current base object to the first
replica.

12. The system of claim 11, wherein the object manager
is further configured to deliver the rebased first object to the
second replica and automatically perform the trivial merge
of'the rebased first object and the current base object to form
a new said current base object.

13. The system of claim 11, wherein the object manager
is further configured to deliver the first object to the second
replica automatically upon a request to merge the first object
with the current base object.

14. The system of claim 11, wherein the object manager
and the object merger are further configured to synchronize
changes in the first replica to the second replica.

15. The system of claim 11, wherein the first object is an
item selected from the group comprising: a newer version of
the base object and a copy of the base object.

16. The system of claim 11, wherein rebasing in accom-
plished based on a user defined preference and/or manually.

17. The system of claim 11, wherein the base object, the
current base object, and the first object all have a same name.

18. The system of claim 11, responsive to determining that
the trivial merge can be performed, for performing the trivial
merge of the first object and the current base object to form
a new said current base object.

19. The system of claim 11, wherein the first object is a
Java object, a C object, a C++ object, a binary software
object, a shell script object, an image object, a video object,
a directory object, and a file object.

20. The method of claim 11, wherein the first object is in
a first code branch and the current base object is in a second
code branch.

21. An apparatus for managing changes in objects at
different locations comprising:

a. means for checking-in a first object at a first replica of

a base object, wherein the first object is a version of the
base object;

b. means for delivering the first object to a second replica
of the base object;

c. means for determining at the second replica if a trivial
merge can be performed between the first object and a
current said base object;

d. means responsive to the determining means, determin-
ing that the trivial merge cannot be performed, means
for delivering the current base object to the first replica;
and

e. means for rebasing the first object with the delivered
current base object.

#* #* #* #* #*

